
Math 53: Multivariable Calculus Sections 201, 204

Worksheet answers for 2021-11-22

If you would like clari�cation on any problems, feel free to ask me in person. (Do let me know if you catch any mistakes!)
We’ll split up the problems by the type of integral involved. First we have the ones which integrate a scalar function with

respect to ds on a curve or dS on a surface. �e main method to tackle these problems is just by direct parametrization.

Question 4. �e integral is ∫C(1 + y)ds. �e curve C can be parametrized as r(t) = ⟨t, t2, 4t2 + t4⟩, 0 ≤ t ≤ 1. Hence the
integral is

∫

1

0
(1 + t2)

√

1 + (2t)2 + (4t3)2 dt.

Question 9. We can just parametrize using x , y, i.e. r(x , y) = ⟨x , y, xy⟩, and then we end up with the integral

∬
D

√

y2 + x2 + 1 dx dy

where D is x2 + y2 ≤ 1. To get an explicit iterated integral, we’d now have to switch to polar:

∫

2π

0
∫

1

0
(

√

r2 + 1)r dr dθ .

Alternatively we could’ve parametrized with polar from the start, via r(θ , r) = ⟨r cos θ , r sin θ , r2 sin θ cos θ⟩. I’ll let you check
that we end up with the same integral.

Next up we have a number of line integrals which compute the work done by a vector �eld along a curve. For these, our
options are

● direct parametrization,
● Stokes’ �eorem in 3D, or Green’s �eorem in 2D, or
● FTLI.

However, the second bullet point can only be applied when the curve is closed (so that it bounds some 2D region), while the
third requires the vector �eld to be conservative, i.e. of the form ∇ f for some scalar function f .

Question 2. It would be somewhat annoying to do this via direct parametrization, as this curve has three parts to consider.
However, it is a closed curve: it is the boundary of the region x2 ≤ y ≤ 1, 0 ≤ x ≤ 1. It is traced out counterclockwise, so Green’s
�eorem yields the equivalent double integral:

∫

1

0
∫

1

x2
(y − 2x2y)dy dx .

Question 7. �is is similar to the preceding problem, except now it takes place inR3. �e curveC is the boundary of a �lled-in
ellipse S on the plane x + y + z = 1, with x2 + y2 ≤ 9. Since C is oriented counterclockwise when viewed from above, S should
be oriented upwards to have ∂S = C. Stokes’ �eorem then says that our integral is equal to

∬
S
⟨0, x2, y2⟩ ⋅ dS.

Now we can parametrize S, e.g. as r(x , y) = ⟨x , y, 1 − x − y⟩.

∬
x2+y2≤9

⟨0, x2, y2⟩ ⋅ ⟨1, 1, 1⟩dx dy

where ⟨1, 1, 1⟩ = rx × ry points upwards, as we want. �en we can switch to polar:

∫

2π

0
∫

2

0
r3 dr dθ .

�is problem could’ve also been approached via direct parametrization, but one would have to deal with some annoyingly
high powers of trigonometric functions in that case.
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Question 8. �e vector �eld isn’t conservative and C is not a closed curve. Both of these issues are not easy to �x in this
problem, so it’s a good idea to just directly parametrize. �e line segment can be parametrized as r(t) = ⟨1+3t, t, 2t⟩, 0 ≤ t ≤ 1,
and then we rewrite the integral as

∫

1

0
⟨4t2, (1 + 3t)2, t2⟩ ⋅ ⟨3, 1, 2⟩dt = ∫

1

0
(12t2 + (1 + 3t)2 + 2t2)dt.

Question 10. �is is a famous vector �eld that I’ve done examples with a few times in class. If you wanted to parametrize C,
the most direct way to do it would be as

x = (2 + cos(4θ)) cos θ
y = (2 + cos(4θ)) sin θ .

Since the worksheet doesn’t ask you to evaluate the integral a�er setting it up, you could write down a (rather ugly) single
integral using this parametrization and call it a day.
However, the main conceptual point of this problem is that the vector �eld has zero curl. It is not conservative on its entire

domain, but ifC′ denotes a circle of radius a < 1 centered at (0, 0) traced out counterclockwise, then applyingGreen’s�eorem
to the 2D region D between C′ and C yields the equation

∫
C
F ⋅ dr − ∫

C′
F ⋅ dr =∬

D
∇× F) ⋅ k dx dy =∬

D
0dx dy = 0

so ∫C F ⋅ dr = ∫C′ F ⋅ dr. C
′ is very easy to parametrize: x = a cos t, y = a sin t, 0 ≤ t ≤ 2π. Note that a is a �xed constant, not a

parameter. (�e a < 1 condition is just to ensure that C′ lies entirely inside of C so that the region D makes sense.) With this
parametrization,

∫
C′
F ⋅ dr = ∫

2π

0
⟨−

1
a
sin t,

1
a
cos t⟩ ⋅ ⟨−a sin t, a cos t⟩dt = ∫

2π

0
1 dt.

Question 11. In this problem,C is again a closed curve, now in 3D. So there’s a good chancewe ought to apply Stokes’�eorem.
However, to do so, we must �nd a suitable surface S such that ∂S = C. No such surface S is obvious from the description of C.
Let’s compute the curl of the vector �eld (since we’ll need to do that anyway if we want to apply Stokes’ �eorem). We �nd

∇× ⟨−xy2, x2y, e5z⟩ = ⟨0, 0, 4xy⟩.
�is vector �eld has only nonzero z-component, whichmeans that its 
ux through any vertical surface is zero. We use this as a
guide for choosing an “easy” surface S: let’s take the portion of the cylinder x2+ y2 = 1 between the curve C and z = −10 (totally
arbitrary number), together with the bottom lid z = −10, x2 + y2 ≤ 1. Since C is oriented counterclockwise when viewed from
above, we orient the cylindrical part of S inwards, and the bottom part of S upwards, so that ∂S = C. So our integral is equal
to

∬
S
⟨0, 0, 4xy⟩ ⋅ dS

and since the 
ux is zero through the vertical cylindrical side, this is just the 
ux through the bottom, whichwe can parametrize
using just r(x , y) = ⟨x , y,−10⟩ for example:

∬
x2+y2≤1

4xy dx dy = ∫
2π

0
∫

1

0
(4 cos θ sin θ)r dr dθ .

2
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Next we have a handful of 
ux integrals through surfaces. Our techniques for dealing with these:
● direct parametrization,
● Stokes’ �eorem, or
● the Divergence �eorem.

Note that the second approach is applicable only when the integrand has the form∇×F for some vector �eld F, and the third
approach requires the surface to be closed, i.e. it must bound some solid 3D region.

Question 1. �e integrand isn’t written in the form ∇ × (vector �eld), so we can’t apply Stokes’ �eorem1. �e surface isn’t
closed either, and �xing that to apply the Divergence �eorem seems like way more trouble than it’s worth. So we’ll just have
to use a direct parametrization, say

r(θ , r) = ⟨r cos θ , r sin θ , r⟩
with 0 ≤ θ ≤ 2π and 1 ≤ r ≤ 3. I’ll omit writing down the integral, but you should be very comfortable with �nishing the
problem at this point.

Question 3. �e problem presents the surface S to you as a boundary! �at’s a good sign to use the Divergence �eorem,
especially considering that you’d have to do three separate surface integrals if you were to tackle the problem directly. With
the Divergence �eorem though, this just becomes

∭
E
2dx dy dz

where E is the 3D region x2 + z2 ≤ 1, y ≥ 0, x + y ≤ 2. To set up this integral, one would probably do dy �rst, and then “polar”
in the xz-plane, e.g. x = r cos θ, z = r sin θ. (One could also describe this as modi�ed cylindrical coordinates.)

∫

2π

0
∫

1

0
∫

2−r cos θ

0
2r dy dr dθ .

Question 5. Since this integral is the 
ux of a curl of a vector �eld, it strongly suggests the use of Stokes’ �eorem. To apply
it, we must identify ∂S, which is described by 4x2 + y2 + 4z2 = 4, y = 0, so equivalently x2 + z2 = 4, y = 0. �is is a circle in
the xz-plane. We need to parametrize it so that its orientation is consistent with that of S, so x = sin t, y = 0, z = cos t will do
(draw a picture and check this with the RHR!). �en we can apply Stokes’:

∫

2π

0
⟨1, esin t cos t , (sin t)2 cos t⟩ ⋅ ⟨cos t, 0,− sin t⟩dt = ∫

2π

0
(cos t − (sin t)3 cos t)dt.

Question 6. Although the ellipsoid isn’t impossible to parametrize directly, it’s a closed surface and it’s much nicer to use the
Divergence �eorem to solve this problem, which converts the integral to

−∭
E
(1 + x)dx dy dz

where E is the �lled-in ellipsoid x2 + 2y2 + 3z2 ≤ 4. Note the negative sign, because the starting surface was oriented inwards,
rather than outwards. Now we apply the change of variables

x = u

y = v/
√

2

z = w/
√

3

so that the region becomes u2 + v2 +w2
≤ 4 in uvw-space, which is a �lled-in sphere. �e integral is now

−∭
u2+v2+w2≤4

(1 + u)
1
√

6
du dv dw

which we can write in spherical as

−∫

2π

0
∫

π

0
∫

2

0
(1 + ρ cos ϕ)

1
√

6
ρ2 sin ϕ dρ dϕ dθ .

1It can’t be written in that form either, since the divergence of ⟨−x ,−y, z3⟩ is nonzero. But in all my time teaching Math 53, I haven’t seen a problem
where students were expected to �nd F given ∇ × F, so it’s safe to say that you should only use Stokes’ on a 
ux integral when the problem explicitly
presents the integrand to you as a curl.

3
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�e last question on the worksheet is a bit of an outlier. Just as howGreen’s�eorem can be used to convert double integrals
in the plane to work line integrals of appropriately chosen vector �elds, the Divergence�eorem can be used to convert triple
integrals in space to 
ux surface integrals of appropriately chosen vector �elds. �is is typically useful when the 3D region to
be integrated over is di�cult to describe, but has a boundary surface that is given parametrically instead.

Question 12. For starters, the curve in the xy-plane can be parametrized as
x = cos(2θ) cos θ
y = cos(2θ) sin θ ,

−π/4 ≤ θ ≤ π/4. When we rotate this around the y-axis, we introduce a new “rotation parameter” α. Note that since we are
rotating around the y-axis, the expression for y will be unchanged. �e expressions for x , z will be the familiar ones for a circle
of radius cos(2θ) cos θ, with α as the circle’s rotation parameter:

x = cos(2θ) cos θ cos α
y = cos(2θ) sin θ
z = cos(2θ) cos θ sin α,

−π/4 ≤ θ ≤ π/4 and 0 ≤ α ≤ 2π. �is is our parametrization of the surface ∂E. �e Divergence �eorem says

∭
E
1 dV =∬

∂E
F ⋅ dS

as long as ∇ ⋅ F = 1. So we have a lot of freedom in choosing F. �e obvious choices are ⟨x , 0, 0⟩, ⟨0, y, 0⟩, and ⟨0, 0, z⟩. But
there’s no need to be hasty and decide just yet—let’s examine dS �rst. Since we need ∂E to be oriented outwards, the RHR tells
us that dS = rθ × rα dθ dα.

rθ × rα = det
⎡
⎢
⎢
⎢
⎢
⎢
⎣

i j k
(−2 sin(2θ) cos θ − cos(2θ) sin θ) cos α −2 sin(2θ) sin θ (−2 sin(2θ) cos θ − cos(2θ) sin θ) sin α

− cos(2θ) cos θ sin α cos(2θ) cos θ cos(2θ) cos θ cos α

⎤
⎥
⎥
⎥
⎥
⎥
⎦

Let’s take F = ⟨0, y, 0⟩, because
● the expression for y itself in terms of the parameters is not so bad, and
● the y-component of rθ × rα is relatively nice too, as the αs will go away and just leave us

(−2 sin(2θ) cos θ − cos(2θ) sin θ) cos(2θ) cos θ .
Note that this is the only component of the cross product that will matter if we take F = ⟨0, y, 0⟩.

We end up with the integral

∫

π/4

−π/4 ∫
2π

0

1
2
cos2(2θ) sin(2θ)(−2 sin(2θ) cos θ − cos(2θ) sin θ)dθ dα.

�is was a (very hard) past �nal exam question. On that exam, the values of some trigonometric integrals were provided, so
that the problem was essentially done once you wrote down this last integral.
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